86 research outputs found

    Momentum maps for mixed states in quantum and classical mechanics

    Full text link
    This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Berry curvature, while its left leg is shown to lead to more general realizations of the density operator which have recently appeared in quantum molecular dynamics. Finally, the paper shows how alternative representations of both the density matrix and the classical density are equivariant momentum maps generating new Clebsch representations for both quantum and classical dynamics. Uhlmann's density matrix and Koopman-von Neumann wavefunctions are shown to be special cases of this construction.Comment: 20 pages; no figures. To appear in J. Geom. Mec

    Electron inertia and quasi-neutrality in the Weibel instability

    Get PDF
    While electron kinetic effects are well known to be of fundamental importance in several situations, the electron mean-flow inertia is often neglected when lengthscales below the electron skin depth become irrelevant. This has led to the formulation of different reduced models, where electron inertia terms are discarded while retaining some or all kinetic effects. Upon considering general full-orbit particle trajectories, this paper compares the dispersion relations emerging from such models in the case of the Weibel instability. As a result, the question of how lengthscales below the electron skin depth can be neglected in a kinetic treatment emerges as an unsolved problem, since all current theories suffer from drawbacks of different nature. Alternatively, we discuss fully kinetic theories that remove all these drawbacks by restricting to frequencies well below the plasma frequency of both ions and electrons. By giving up on the lengthscale restrictions appearing in previous works, these models are obtained by assuming quasi-neutrality in the full Maxwell-Vlasov system.Comment: 25pages; 7 figures. Submitted to J. Plasma Phys. Special issue contribution, on the occasion of the Vlasovia 2016 conferenc

    Regularized Born-Oppenheimer molecular dynamics

    Get PDF
    While the treatment of conical intersections in molecular dynamics generally requires nonadiabatic approaches, the Born-Oppenheimer adiabatic approximation is still adopted as a valid alternative in certain circumstances. In the context of Mead-Truhlar minimal coupling, this paper presents a new closure of the nuclear Born-Oppenheimer equation, thereby leading to a molecular dynamics scheme capturing geometric phase effects. Specifically, a semiclassical closure of the nuclear Ehrenfest dynamics is obtained through a convenient prescription for the nuclear Bohmian trajectories. The conical intersections are suitably regularized in the resulting nuclear particle motion and the associated Lorentz force involves a smoothened Berry curvature identifying a loop-dependent geometric phase. In turn, this geometric phase rapidly reaches the usual topological index as the loop expands away from the original singularity. This feature reproduces the phenomenology appearing in recent exact nonadiabatic studies, as shown explicitly in the Jahn-Teller problem for linear vibronic coupling. Likewise, a newly proposed regularization of the diagonal correction term is also shown to reproduce quite faithfully the energy surface presented in recent nonadiabatic studies.Comment: Third version with minor changes. To appear in Phys. Rev.

    The helicity and vorticity of liquid crystal flows

    Full text link
    We present explicit expressions of the helicity conservation in nematic liquid crystal flows, for both the Ericksen-Leslie and Landau-de Gennes theories. This is done by using a minimal coupling argument that leads to an Euler-like equation for a modified vorticity involving both velocity and structure fields (e.g. director and alignment tensor). This equation for the modified vorticity shares many relevant properties with ideal fluid dynamics and it allows for vortex filament configurations as well as point vortices in 2D. We extend all these results to particles of arbitrary shape by considering systems with fully broken rotational symmetry.Comment: 22 pages; no figure

    Multiscale Turbulence Models Based on Convected Fluid Microstructure

    Full text link
    The Euler-Poincar\'e approach to complex fluids is used to derive multiscale equations for computationally modelling Euler flows as a basis for modelling turbulence. The model is based on a \emph{kinematic sweeping ansatz} (KSA) which assumes that the mean fluid flow serves as a Lagrangian frame of motion for the fluctuation dynamics. Thus, we regard the motion of a fluid parcel on the computationally resolvable length scales as a moving Lagrange coordinate for the fluctuating (zero-mean) motion of fluid parcels at the unresolved scales. Even in the simplest 2-scale version on which we concentrate here, the contributions of the fluctuating motion under the KSA to the mean motion yields a system of equations that extends known results and appears to be suitable for modelling nonlinear backscatter (energy transfer from smaller to larger scales) in turbulence using multiscale methods.Comment: 1st version, comments welcome! 23 pages, no figures. In honor of Peter Constantin's 60th birthda

    Variational approach to low-frequency kinetic-MHD in the current coupling scheme

    Get PDF
    Hybrid kinetic-MHD models describe the interaction of an MHD bulk fluid with an ensemble of hot particles, which is described by a kinetic equation. When the Vlasov description is adopted for the energetic particles, different Vlasov-MHD models have been shown to lack an exact energy balance, which was recently recovered by the introduction of non-inertial force terms in the kinetic equation. These force terms arise from fundamental approaches based on Hamiltonian and variational methods. In this work we apply Hamilton's variational principle to formulate new current-coupling kinetic-MHD models in the low-frequency approximation (i.e. large Larmor frequency limit). More particularly, we formulate current-coupling hybrid schemes, in which energetic particle dynamics are expressed in either guiding-center or gyrocenter coordinates.Comment: v3.0. 30 page

    Equivalent variational approaches to biaxial liquid crystal dynamics

    Full text link
    Within the framework of liquid crystal flows, the Qian & Sheng (QS) model for Q-tensor dynamics is compared to the Volovik & Kats (VK) theory of biaxial nematics by using Hamilton's variational principle. Under the assumption of rotational dynamics for the Q-tensor, the variational principles underling the two theories are equivalent and the conservative VK theory emerges as a specialization of the QS model. Also, after presenting a micropolar variant of the VK model, Rayleigh dissipation is included in the treatment. Finally, the treatment is extended to account for nontrivial eigenvalue dynamics in the VK model and this is done by considering the effect of scaling factors in the evolution of the Q-tensor.Comment: 8 pages. Third versio

    Geometry and symmetry of quantum and classical-quantum variational principles

    Full text link
    This paper presents the geometric setting of quantum variational principles and extends it to comprise the interaction between classical and quantum degrees of freedom. Euler-Poincar\'e reduction theory is applied to the Schr\"odinger, Heisenberg and Wigner-Moyal dynamics of pure states. This construction leads to new variational principles for the description of mixed quantum states. The corresponding momentum map properties are presented as they arise from the underlying unitary symmetries. Finally, certain semidirect-product group structures are shown to produce new variational principles for Dirac's interaction picture and the equations of hybrid classical-quantum dynamics.Comment: First version. 23 pages. Comments welcom
    • …
    corecore